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Intreduction

Qualitative analysis assumes considerable importance in the
investigation of complex oscillating systems, since it allows of identifying the most
general features of the system behaviour. The paper reveals a general method for
analyzing linear systems with periodic and almost periodic parameters.

The Part 1 of the present paper [}] has quoted a basic system of two linear
differential equations of the generalized parametric oscillating circuit, The reason-
able areas of applying different form of equations have been discussed. A three-
dimensional cylindrical space has been put in correspondence to the set of equations
describing every possible oscillating systems with periodic parameters. Such an ap-
proach has allowed to make a methodologically consistent classification of the oscil-
lating circuits with periodical parameters in accordance with the most important
indication, namely the stability and unstability according to Lyapunov's propoundings.

In the present Part 2 of the paper, the attention is mostly focused on the
problem of stability of the cannonical systems in a general form. Criteria for the
stability or instability of a general linear resonance circuit are formed.

' An investigation supported by the “Scientific Rescarch® Bulgarian National Fund under Coniract
No TH- 549/85.
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Stability of the cannonical systems

Let us assume that we have the following cannonical system:

(1) @ =JH (t)x,

where H ()= [g i) &

An important role in the stability investigation is played by the rotation angle
of vector x (1)=X(7) C, C is a constant vector.

We shall denote the rotation angle of a gi\la'en vector z{t)= (pJ as @ (7). Obvi-
ously, q

4 " ‘
@) d9.6) =£au‘<:tgg =P _ = et g
P +q

a a& P pP+g’ g g
I .
- Det z/2
e, 9.0)-0,0)= [2LELE,
| (z)
By using this formula, as well as the relation Deta|.I'b = (a,b), we obtain the
following equation for the rotation angle of the cannonical system (1)

A (Hx, x)

S i—_(x,x) dt.

We designate the characteristic number A, (0 and & (f) of matrix H(z) as

fellows:
+ —
im0} =2 Yi]/({x 4"’)2 +B%
min

Since s e (gx;;)

<h_.(2)

THIN
it follows that T 7
Jham@dtso < [h @) d.
( 0, % i
Let us assume that H = [g{}fo] and o, B, v,, are arbitrary numbers, satisfying
0Yo

the conditions that o >0, v,>0, 0.y, 8 o =1while s .k are roots of the equation:
Det [H(r)-hH,]=0.
If inequalities iy T ;
(3) A7 < [ hin(2) de < [ hena (£)dt < (n+ 1)
0 0

are satisfied for a definite n=0, +1, +2, *..., equation (1) will be stable and
H(H)E O, (see [1]). i
! As an illustration of this stability criterion we shall consider equation
d—-% +p(t)y=0, which is a particular case of the cannonical system {1). Let us set
dt '

C>0 as a constant, for which:
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nw (n+1)m

=3 <C< , nis an integer.

Provided that inequalities

& T
@ . " < %‘lpg (r)de < %ip;;(r)dz <(p+1)m,

p(2) for p(t)> C*

+ {, ={
where PC( ) 2 for pli) < c?

p(t) for p(r)< c?
c?, for p(t)> 2

pa()={

are satisfied, the equation under consideration is stable and p ()€ O, (see [1]).

Let us formulate a second stability criterion. Let inequality [H(f) C, C}20 be
valid for any 7 and C. If inequalities k< m <M < (k+1)x are satisfied, equation (1)
belongs to the k—th stability area (see [1]).

And if inequalities M_>km, m < k7 are satisfied, equation (1) belongs to the
k—th instability area.

If inequality (H(¢) C, C) < 0 is valid for any ¢ and C, the following substitutions
should be carried out in the previous inequalities: M, should be replaced by M _,

and m, by m_.

Here: AR
| Mi=Ai;Ci +J(A: 4C¢) +B2,
—c. )P
mi=Ai;Ci _J(A: . :) +B2,

t

Ay =Tcxp [i_[g dt ]adr. B, = %Ejexp {ijgdt]ﬁdt;
0 0

0 &

T I ) (@—7)° | n2
C+ =\le o dt dr, i) s e es ) e
+ £XP{ {g ]v 4 1/ T b

Sometimes, owing to various reasons, equation (1) proves to be inconvenient
for analyzing its stability, In such cases it is desirable to transform (1) into another
equation located in the same area of stability or instability. Let us illustrate this
option.

The following denotations are introduced as a supplement to (1)
t

® o= LB, 8(6)= [80)-Blet
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The variables are substituted as follows:

X = e_a(r)zl, Xy = e_s(’)zz‘

The result is a system of equations:

dZ]

| = i )
) % Bo 2 Yi()zz

dz

__drz =04 (f)zﬁ'ﬁn 23-

This is a system of a cannonical type with a matrix

m=( ) o) @O=S, 100

Systems (1) and (6) are situated in the same areas of stability or instability, for
it can be shown that the rotation angles of arbitrary vector solutions x(7) and z(z)
for these two systems of equations are identical. System (6) however is frequently
more convenient for investigation, since two elements in matrix H (#) have proved
to be equal and unchanging (constant) in time.

It is always possible to identify two constant matrices C* so as to satisfy the
inequalities: C~ < H,(r)<C*.

These two matrices are determined in a sufficiently simple way as

c* = o Bo |
) : (ﬁo s

o = max oe{r) Yo = max Y (¢}
! !

04 = min Oﬁ(l ) Yo =minY (e ):
¢ t

The constant matrix C* is referred to the n-th stability zone, i.e. C* €O, if

). 22
1
”Tf <DctCt<b#—(see{l])‘

On this basis the stability criterion can be formulated in the following

manner.
If the inequalities
el 2_2
AR + + o2 (na I) Fid
8 S0 Yo —Ba L =
( } TZ 0 Yo BO TZ

are satisfied and o +y5 >0, of +¥,; >0, equation (1} will be stable and
Hit)e 0,, n>0 _ :
Provided that inequalities (8) are satisfied, but o} +7Yg <0and of +y; <0,
equation (1) will also be stable and H{t}e 0, (n>0).
In the case of oy 5 —B3 <0 and oy Yp —B5 <0, H(#) will belong to the zero
area of instability.
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Finally we shall dwell on the following practical issue. Let us assume that
there is a particular cannonical system of the type of {1). How should we answer
the question which area of stability or instability it belongs to? In order 1o corne
up with an answer, we should approximate the matrix of sysiem H(¢) with two
piece-wise constant matrices H(f) and H*(¢), so that H{f} £ H{{) £ H*(?). As the
approximation accuracy increases, one of the following two conclusions is ulti-
mately arrived at: (a) Matrices H(¢) and H '(f) fall in one area of stability or insta-
bility, which will also encompass matrix H(s); (b) These matrices never fall in the
same area: one of them is situated in the stable area, while the other one is located
in the adjacent unstable zone. Then obviously matrix H{s} lies on the boundary
between these two areas.

The outlined method requires an ability to determine which area of stability
or instability the piece—wise constant matrices belongs to. We divide up the inter-
val [0, 7] into smaller sub—intervals like this: 0=¢, <t <t,<..<t =T, -1 =7, We set

A=K for t <t<t. Then x{y;)= ™" ¢*" ¢K1M and in particular

(9) x{(T)= ™% X K

It is convenient to calculate the matrix exponent ¥ according to the formula:
1
X =chul+-shpk,
£l

+ are characteristic figures of X. In the particular case of =0, one can deter-
mine e* =T +K.
The characteristic equation regarding x (T} is of the form
22 —2ah+1=0,

where 2a=Sp x (7). Provided that |a|<1, it follows that 4 (z)e (), {all solutions are
‘bounded), and when |a|>1, A (¢)e H is valid (there are unbounded solutions as
well). With a view to identifying the number of the stable or unstable range, the
rotation angle of the solution should be computed.

1
Let us take x; = (OJ as an initial vector. Then for ¢=, the solution will take

1
the form x, = kit i If K, is unstable (i.e. Det K; <0), the rotation angle for a

period of time 7, will fall within the range —n<t <m If K, is stable (i.c.
Det K ,>0), the matrix column can be used to determine the rotation angle only
within an allowance of the term m® (m is an integer). For the purpose of estab-
lishing the rotation angle accurately, it is necessary to set temporarily T=%, and to
determine the stable range to which K| belongs. Let us assume that = is the num-
ber of this stable range, while ¢, is the rotation angle over a period of time 1. Then
mn<@ <(m+1) n and the angle can be determined accurately.

For t=t, the solution will be x, = eKﬁTQeK'T'xO; once again the rotation angle
@, is determined and the total resultant rotation angle is summed up: ®@ =@+ @,.
The complete rotation angle is: @ =@+ @, +...4+ ¢, . If |a|<] and m t<@<(m+1) 7,
A(t)e 0,, (see'[1]). And if |a|>1, the solution will be unstable: 4 (/)=H, . We should
determine m. As it was shown above, there is only one matrix K, satisfying the
equation X’ =B B= et gKniBur | KT oKiT (out of the two possible signs

we select the one for which K is real). Let us assume that @, and @_are the natural
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vectors of matrix K: Ka, =tpa, (u>0). We have already shown that all vectors
lying in quadrants I and II (this refers to the natural vectors) turn at an angle ¢
over time 7 mn<@<(m+ 1)z, and the vectors situated in quadrants 11 and IV turn
at an angle ¢: (m-1)n<@<mn. The problem of determining the rotation angle boils

] 1 :
down to plotting vectors a, and a, clarifying which guadrant vector X = ol lies

in, and determining the angle by using one of the inequalities given above.

Thus, by employing simple algebraic operations one can always determine the
stable or unstable area to which the interval—constant matrices H{t) and H*(%)
belong,

Stability eriteria of a generalized
linear resonance circuit

We shall consider a generalized linear oscillating circuit of
the type shown in Fig. 1, assuming that for />0 its parameters change in accor-
dance with an arbitrary continuous law, yet they remain positive:

| C@, G, L(), R(1)>0

Dur, 1.

The free process is described by the following system of differential equations
concerning the charge ¢ of the capacitor and the magnetic flux @ of the induc-

tance: dxl G 2
AT e e
(10) dt C L
dxy . R
O b et
d  rC L
L L0) J
where x, = —q—, b A 1L doo» Pop, ¥ - constants.
o 00 o0 :

The linear system (10) is a‘particular case of the system —;ix = f{x,1} (see
t

_G@
[1]), whete x = colon (x,, x,), f(x,6)= A(r)x, A= C['(t) Rlir(i) _

rC(e) L)
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Two criterta (sufficient conditions) for oscillating circuit stability will be re-
counted.

Criterion 1. Theoscillating circuit will be stable according to Lyapunov’s
definition, if a positive constant r can be selected, for which, given £0, the follow-
ing inequalities will be satisfied:

(11)
i-l_ Hiend Luc > 0.
2L rC
In order to prove this we select a definitely positive Lyapunov function [2} in
the form 1 1
(12) Vix)= E(x,x)-—— E(xlz +x§)

Its derivative in compliance with system (11} i3

; f : R 1
V(x)=x%y + X535 = —%xlz ——x% = i——]xixz.

& L rC
The last term can be estimated by employing the inequality
2, .2 Do
+ +
— XI x2 S xle S x} 2 x2 .

Therefore, V(x) is situated between two functions conditioned by the differ-
ent signs of the expression

e r_ A2 Rufr 12
I B\LER A L L rC

We arrive at the conclusion that if inequalities {11} are satisfied, the derivative
of Lyapunov’s function is non-positive, which, in this case, is the condition of
oscillating circuit stability according to Lyapunov’s definition.

Given a satisfaction of the strict inequalities (11), L.e.

(13)
Eil(L_L}O_

Lyapunov's conditions for asymptotic stability are met.

Consequence: The oscillating circuit with positive parameters, where G(¢)
and R(?) are arbitrary time functions, while C and L are constants, is asymptoti-
cally stable according to Lyapunov’s definition. Indeed, in this case parameter »

can be selected so that r= £ Then the bracketed expression in {13) will be

nullified. The same consequence can be arrived at by using the energy conservation
law as a starting point. Then we have to take into account that in the case of
constant reactances there is no energy input in the circuit. The energy is continu-
ously dissipated in the active elements of the circuit at varying speed.
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Criterion 2. The oscillating circuit will be stable, if, for an arbitrary ¢, the
following system of inequalities is satisfied:

k—=1dL | LdC

R———————~ "~ >g,

(14) 2 dt 2°C dr
g_l=1dC _kcdL,,

2 dtr 2L d:

where k and [ are an arbitrary couple of integers taken from the set: 0,£1, 12, too,
In order to prove this we set r=1 (gpo=1tand @ =1) in (1} and choose a
definitely positive Lyapunov’s function in the form

(15) EV AR LI LTl VTS
Then, provided that inequality {14) is satisfied, its tota] derivative

ﬁ/_:ﬁgff‘?cf R___k_lié_i L dc d2
di e dr 2 € iy
9 Lt ol G_Eic__ﬁ_c_ﬂ qz,
2 dr 2L dt

will be non-positive, i.e. once again Lyapunov’s condition concerning the stability
of the specific oscillating circuit under consideration is met. Analogously, pro-
vided that the strict inequalities (14) are satisfied, Lyapunov’s criteria of asypmtotic
stability of the oscillating circuit are met.

Consequence: The oscillating circuit will be stable, if, for 1 » 0, the fol-
lowing system of inequalities is satisfied:

Re=2Ls0 g119C5,
2 dt 2 dt

These inequalities are yielded by (11) at k=/=0. In this case Lyapunov’s func-
tion {15} acquires a clear physical meaning, since it represents the instantaneous
energy stored in the circuit reactances,

Let us now consider the case when R(?), G{1) > O for ¢ > 0, and let us assume
that the continuously changing reactances of the generalized oscillating circuit
(Fig. 1) can take both positive and negative values. In reality a similar situation
occurs in the case of Josephson superconducting junctions, whose equivalent in-
ductance takes negative values during a part of the changing period. In a more
general treatment, this is a system, where the effect of a single—frequency non—
degenerate parametric regeneration is manifested [3].

The free process in the generalized oscillating circuit (Fig. 1), excluding sources
i, and U, can be described by the following system of differential equations con-
cerning the voltage U at the capacitor and the current i flowing through the induc-

R dx, 1(. dcC |
T et el e Dy
dt (& dt rC

(16)

dt L L dt
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U { Uny ;
where xj=——, Xy =—,r= ‘—90; Ugo. iy, ¥ are constants.
00 00 ‘00
Lyapunov’s function is set in the form
. C . L
(17 V =sign € == x? +-sign L — 2,
' 249! 2r
where, for example,

1, forC >0
sign C =40, forC =0
' 1,forC<0

Hence function {17) is positively defined. Its derivative by virtue of (16) is

av . 1 dC : 1 1 dL ] :
Ezhmgn(?r G+EE xf—:ngnL: R+§; x5 —(sign C —sign L) x;x,.

The bracketed expression in the last term can take the following values: -2, -1,
0, 1, 2. If the extreme values are considered, it becomes obvious that — is always
located between the following two functions: _ dt
: IdC 7 6 Ml 14L
18 —sign Cr| G+—— —sign L—| R+——— [£2x x,.
S gnr[ 2d:]x‘ gnR[ Zdt] bz
Sincé evidently — (xf + x5 )S 12x %, < (xlz + xzz) it can be seen that the two func-
tions (18) are located between the functions oA
: 1dC 2 : 1 1d4L 5
19 —|signCr|G+——— [Tllxy —|sign L— | R+— |1 |x5.
{19 [gnr[ 2a’r]]‘[g.r( 2dr]]2
Lyapunov’s theorems (from Lyapunov’s second method} and expression
(19) allows of obtaining criteria of the stability or instability of the oscillating
circuit in this case.
Stability criterion. Theoscillating circuit will be stable, if the follow-

ing system of non-strict inequalities is satisfied in the interval [#,c) and given a
positive »

1d4C ;
ignCr|G+—— [-120,
Slgl'l r[ 2 dr]
1 14L
sistnL—~|R+——1-120.
= r( 2dt)

The oscillating circuit will be asymptotically stable, if the system-of strict in-
equalities {20) is satisfied under the same conditions.
Instability criterion. The oscillating circuit will be unstable, if the

following system of strict inequalities is satisfied at f — o and a positive r:

~ sign Cr[G+%i—f]+14 g,

(21)
sign LAt RAS A | hag
r 2 dt

(20}
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It follows from system (16) that if the signs of all oscillating circuit param-
cters are changed to their opposites, the result will be a system of the same type.
This implies that if all the parameters of the oscillating circuit change in time
according to arbitrary laws, yet in such a way that their signs change to their
Opposits simultaneously, from the viewpoint of stability the oscillating circuit will
be equivalent to another oscillating circuit, whose parameters change in time in
compliance with laws equal to the modules of the respective laws governing the
changes of the initial oscillating circuit.

Conclusion

Systems described by differential equations of the second
and higher order with periodic coefficients have been tackled by a lot of works:
beginning with the classical ones of Lyapunov and ending up with the numerous
publications by modern researchers, In spite of the considerable number of in-
structive mathematical publications, the problem of analyzing qualitatively the
free processes in a parametric oscillating circuit cannot be regarded as solved.
There is an essential difference between the analysis of the abstract mathematical
equation and the particular engineering—and~physical system, As z ruie the engi-
neering-and—physical problem is made up of three parts. The first one allows of
using the physical properties of the system as a starting point for obtaining its
schematic and analytical description as well as the respective mathematical equa-
tion, The second part consists in solving and exploring the equation obtained. The
third part provides a physical-and-engineering interpretation of the results, The
mathematical problem is a component of the engineering-and-physical one and
constitutes the latter’s second part. The powerful mathematical means used in its
solution often allow of obtaining thoroughgoing results. Thus, in a certain sense,
the engineering-and-physical approach is broader than the mathematical one, but
the latter is more profound. When solving the engineering-and-physical problem,
it is important to adapt and use adequately a relevant mathematical technique.
The paper has seeked to combine the general formulation of the engineering—and—
physical problem concerning the processes in a generalized periodical oscillating
circuit with the profundity of the mathematical exploration.
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KavecTBer aHaan3 Ha CBOOOAHUTE NMpPOLECH B
0600IIEH NUHEeH TPENuTAN] KPBr C MEPUOAUIHH
napamMeTpu

Yact 2. CTabuiHOCT Ha XaHOHUYHHTE CHUCTEMHU
¥ Ha o0oO0IieHa JruHeHHA pe30oHAaHCHA Bepura

Hukonaid JI. Bupwok, Baadumup H. Hameos

(Pezaome)

B #act mepsa ra cratusta [1] 6axa GUCKYTHPAHH BH3MOXK-
HHTE ApeoCpazyBaHus HA YPABHCHHUATA, ONHCBAIIY TPENTHIN XPbI € NEPHOLAIHY
H [IOYTH NEePpHCANYEY BBB BPEMETO NIapaMeTpH. baxa ananniupanu nenecsodpas-
uure ofAgacTy HE HPHOXKEHHe Ha egHa uiu upyra ¢opma Ha cuUcTeMara
nHEQEpeHIMANHE YPpaBHEHH B B¢ IpUNoxeHa KNacudbukanus Ha TpenTAIATE
KpbroBe IO HaW-BaXHUA NMPH3HAK — YCTOMUYHBOCTTA M HEYCTOWYHMBOCTTA Ha
JlgnyHos.
OcHOBHOTO BHUMaHHE TYK & (FOKYCHPAHO BhpXy IpohHiaeMa 3a yCTORIMROCTTA
Ha KaHOUMYHaTa cucTeMa nud)epeHIEANHY ypaBHerus B obui sun. Gopmupanu ca
KpUTEPHE 32 YCTORYHBOCTTA M cTabunnocrTa Ha obobluerna NHHERHA perOHaHCHE
CHCTEMA C LIEPUOJAYHH BBLB BpEMETO IapameTpH. JloxaiBa ce BAXHOCTTA 1&
[IpaKTHKAaTa Ha OGLIHA Ka4eCTBEH aHaANK3, Ha “pasyMHus” Oanasc Mexay obmorTo
40CTPaKTHO MAaTEeMATHYIHO H3CIe[ABaHe H KOHKPETHHS WHXGHCREH allalus Ha
Pe30HAHCHHTE CHCTEMHU ¢ HEPpHOAMYHH HIIH IOYTH NMepHOARYHA TapaMeTpl. CaMo
TaXbB NOAXOXD IIO3BOISABa, OT €IH& CTpaHa, [a Ce ICJIYyYH IPencTaBa 3a
MHOXECTBOTO 32KOHOMEPHOCTH M CBOHCTBATa Ha H3cNeBaHaTa CHCTEMa, a OT
Apyra cTpaHa — na ce H3fepe HaW-DONXOASMIHAT MATeMaTHYEH 4mapaTt 3a
npoBeXAaHe Ha Habensazanus aHanu3 ¢ HeoOxouumara Nendcuuna. B pabotata ¢
HANPABEH OIKT f1a C& CHYETaE BH3AMOXHO Haf-o01oTo opMynupaHe Ha QHU3UKO-
TEXHHYECKATA 33844 34 aHA/IU3 Ha CJIOKHHTE HPONECH B NePHOANYHA WK NOYTH
HepUCAUYHA TPENTALla CUHCTEMa C BH3MOXHATA 3agbIOCICHOCT Ha MAaTeMaTH-
4eCKOTO H3chenBane. PaspaboTeHUsT aHATUTHYEH NOAXOX € IPUIIOXEH KOBKPETHO
KoM 0DofInena NuHelHa TPENTALIE CHCTEMa ¢ NepHOTUYHY NapaMeTpH, KaTo ca
IMOIYYeHH CHBCEM SCHH U NPAKTHYECKH YHODHW KPHTEPHH 332 YCTOMYHBOCTTA H
HeyCTOHYHBOCTTA HA CHCTEMATa.





